гиперболический
71ПОВЕРХНОСТЬ ВТОРОГО ПОРЯДКА — множество точек 3 мерного действительного (или комплексноро) пространства, координаты к рых в декартовой системе удовлетворяют алгебраич. уравнению 2 й степени (*) Уравнение (*) может и не определять действительного геометрич. образа, в таких… …
72Логарифм — График двоичного логарифма Логарифм числа …
73Параболоид — ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка. Канонические уравнения параболоида в декартовых координатах: если и одного… …
74Эллиптический интеграл — В интегральном исчислении, эллиптический интеграл появился в связи с задачей вычисления длины дуги эллипса и был впервые исследован Джулио Фаньяно и Леонардом Эйлером. В современном представлении, эллиптический интеграл  это некоторая… …
75Марков, Александр Владимирович (биолог) — В Википедии есть статьи о других людях с такой фамилией, см. Марков. В Википедии есть статьи о других людях с именем Марков, Александр Владимирович. Александр Марков Дата рождения: 24 октября 1965(1965 10 24) (47 лет) Страна …
76Комплексный логарифм — Наглядное представление функции натурального комплексного логарифма (главная ветвь). Аргумент значения функции обозначается цветом, а модуль яркостью. Комплексный логарифм аналитическая функция, получаемая распро …
77Параболический гиперболоид — Параболоид ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (т.е. не имеющая центра симметрии) поверхность второго порядка. Канонические уравнения параболоида в декартовых координатах: z = ax2 …
78Параболоиды — Параболоид ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (т.е. не имеющая центра симметрии) поверхность второго порядка. Канонические уравнения параболоида в декартовых координатах: z = ax2 …
79Эллиптический параболоид — Параболоид ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (т.е. не имеющая центра симметрии) поверхность второго порядка. Канонические уравнения параболоида в декартовых координатах: z = ax2 …
80ГИПЕРБОЛИЧЕСКИЕ ФУНКЦИИ — функции, определяемые формулами: (гиперболический синус), (гиперболический косинус), (гиперболический тангенс) …